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Through use of carefully controlled photochemical reaction
conditions and surface chemistry, we demonstrate the formation
of micrometer- to millimeter-sized, chemically functionalized
regions on the surfaces of polymer-based microfluidic analysis
systems. Covalently attached, selective-capture elements, conducting
metal films, and responsive-polymer bioanalyte concentrators can
be readily patterned on the surface of both poly(methyl methacry-
late), PMMA, and poly(carbonate), PC, microfluidic devices. These
architectures are fabricated by chemical elaboration of carboxylic
acid moieties resulting from direct, controlled UV exposure of the
polymer device substrates in oxygen-rich environments. This direct- . . . ;
write photochemical patterning approach is significant for the 0 Ez‘:wsure Time (:?in) 60
aq_vancement of _polymerjbased microfluidic devices be(_:ause tra- Figure 1. Effect of UV (i = 254 nm, 15 mW o) exposure time on
ditional photoresist techniques cannot be used (solvent incompat-¢ | ¢ concentratidh of carboxylic acid groups on poly(methyl meth-

ibility issues), and it is a simple, convenient process that is readily acrylate), PMMA, and poly(carbonate), PC, surfaces.
accessible to a variety of scientists and engineers.

Miniaturized chemical and biological analysis systems have
moved to the forefront of the bioanalytical science arena because
only small amounts of reagents are required to evaluate miniscule
amounts of analytes, and the analyses can frequently be run in
parallel*=* Polymer-based microanalytical devige$ offer distinct
advantages over those made in silicon, glass, or quartz, in that
polymer-based systems can be fabricated using simple, rapid
methods (embossing/injection moldigi2“soft lithography®:19).
However, it is clear that the current and potential applications of Joic n
polymer-based systems will require development of a variety of figyre 2. Tapping mode scanning force micrographs (@6 x 25 um)
surface chemistrié%!* and patternint thereof on the millimeter of PMMA sheets exposed to 254-nm light through a Ni mesh (if6-
to nanometer scales. Modification of microdevice surfaces is of gﬁg Squf&lres)i 5 Eﬂn (|e_ﬂ)tﬁnd 120 mcijn (righBrrange= 2f00m2n;é;'?56

H H H H Surface rougnness In the exposea areas Increases 1ro
ﬁ(r;\e/?tl ggggrr:)etlir;%eagzc;:iincz;fe:;(raatri]g:%ffr%ratrzagglglii;?en-coefl|ﬂUId miq exposur_e)_ to 2325 nm (120 min exposure). Pristine PMMA sheets
’ . . TSy - typically exhibit a surface RMS value of 36 nm.
growth studieg® construction of array and amplification devidég?

and electrical communication within and outside of the device. routes?2-24 Formation of monolayers of carboxylic acid groups on
Carboxylic acid groups can be formed, without significant py\y\va and PC using the conditions described here was confirmed

topographical changes, on the surfaces of PMMA and-PC . fnctional group-specific labeling, as shown in Figu?éand

substrates used extensively in embossing and injection mOldlngimagin921 as well as X-ray photoelectron spectroscépyin

fabrication of micro?nalyti_c_al devices—by their UV irradiation ¢omparison to their pristine counterparts, carboxylic acid-terminated
in O, environments: Specifically, this is achieved by exposure of (1) gevices exhibit substantially higher water wettabilities (PC:

the polymers, in air, to 254-nm light with a power density of 15 g /g 8%: PMMA: 52° vs 70%; 2 h exposure) and electroosmotic
mW cnr2 for roughly 60 min or less (dose ~54 J cnT?); these flow (PMMA: 4.5 x 1074 vs 2 x 1074 cm2 V-1 s at pH 7.0;
conditions maximize UV-induced carboxylic acid group production ps. 54 1074 vs 2.6 x 104 cn V-1 s-2 at pH 6.0; 30 min
(from ester cleavage reactions) and minimize etching/ablation/
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TCH ¢ " exposuref!
depolymerization reactions that have been used to machine A yey characteristic of this work is the lack of significant physical

structures in polymer&:2° As previously shown by others, the  yamaqe to the polymer surfaces for short exposure times; however,
use of high-fluence or more energetic light sources, or high-dose longer exposure times of 6020 min (dose of 54108 J cm?)

exposures at 254 nm, leads to machining of PMMA or PC, with 654 5 measurable increases in surface roughness as shown in

concomitant formation of surface carboxyl groups, both resulting gjg e 2 Serious damage to the polymer surfaces is observable by
from a combination of oxidative and thermal decomposition eye for exposures greater than 3 h.

* Department of Chemistry Antibodies immobilized on the CT-terminated microanalytical
* Department of Mechanical Engineering. devices can be used to capture whole mammalian cells. In Figure
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Figure 3. Fluorescently stained 4-diamidino-2-phenylindolelex =
358 nm) EpCAM cells on (left) 5@am- and (right, bottom) 2@im-wide,
100um-deep CT-PMMA channels derivatized with anti-EpCAM antibodies
resulting from pumping a f0cells cnT3 solution through the 4-cm-long
PMMA channels at 2 mm$ for 90 s. Image is 56@m long in the bottom
image.

Figure 4. Fluorescence micrographéef = 488 nm) of 18um x 18 um
pNIPAAm patterns (Ni mesh mask) on PMMA exposed to 1.0 mg/mL
fluorescein-labeled goat anti-rabbit IgG antibody (150-6060 000 Da)

in pH 7.4, 0.01 M PBS, fo2 h at 40°C (left) and 0.5°C (right).

3 are surface-captured, MCF-7 cells that overexpress EpCAM, a
cell-surface protein that has been identified as a marker for breast
cancers. Capture was achieved by hydrodynamically pumping, at
2 mm st for 90 s, a suspension of MCF-7 cells through
hot-embossed, CT-PMMA microfluidic chann&lsvhose surfaces
were derivatized with anti-EpCAM antibodiésFluidic modeling

(30 00G-50 000 Da) affsoin < Ticst confirm that protein is virtually
undetectable, as is the case for protein-covered surfaces (formed
at Tson > Ticst) that have subsequently been placed in aqueous
buffers with Tgon < LCST so as to desorb the protéin.

The work described here lays the foundation for the laterally
selective modification of PMMA- and PC-based microfluidic
analysis devices, an area that is of great importance to the analytical
and biological sciences arenag.Using the chemistry developed
here, we are currently exploring the use of electrolessly deposited
metal interconnects/electrodes, integrated oligonucleotide and pro-
tein arrays for the early detection of disease biomarkers, as well as
environmentally responsive control of flow in nanofluidic polymer-
based devices.
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